MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinearity engineering with the Quarton

Author(s)
Ye, Yufeng,S.M.Massachusetts Institute of Technology.
Thumbnail
Download1191906022-MIT.pdf (1.170Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kevin P. O'Brien.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we show the principles and applications of a new technique we call "nonlinearity engineering" using a recent superconducting qubit, the Quarton. In traditional nonlinear optics, nonlinear effects are usually weak perturbations to linear interactions. Similarly, microwave quantum optics with superconducting circuits relies on the Josephson junction for a negative Kerr nonlinearity that is much weaker than its associated linear energy. Recently, a new superconducting qubit known as the "Quarton" can offer non-perturbatively strong nonlinearity. Here, we demonstrate the general principle of using the Quarton's positive Kerr and zero linear energy to perform nonlinearity engineering, i.e. the selective design of the nonlinear properties of microwave artificial atoms, metamaterials, and photons in a manner that (to the best of our knowledge) has no optical analog. We show that for Quarton mediated light-matter coupling, the Quarton can erase or amplify the nonlinearity of artificial atoms and metamaterials. Without nonlinearity, matter behaves light-like and we find (to our best knowledge) the first theoretical demonstration of cross-Kerr between linear microwave photon modes. We extend these fundamental results and provide a practical application by designing a Josephson traveling wave photon detector
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 59-62).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127318
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.