MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical and computational methods for analysis of spatial transcriptomics data

Author(s)
Cable, Dylan M.(Dylan Maxwell)
Thumbnail
Download1192472702-MIT.pdf (14.40Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Fei Chen and Rafael Irizarry.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Spatial transcriptomic technologies measure gene expression at increasing spatial resolution, approaching individual cells. One limitation of current technologies is that spatial measurements may contain contributions from multiple cells, hindering the discovery of cell type-specific spatial patterns of localization and expression. In this thesis, I will explore the development of Robust Cell Type Decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA sequencing data to decompose mixtures, such as those observed in spatial transcriptomic technologies. Our RCTD approach accounts for platform effects introduced by systematic technical variability inherent to different sequencing modalities. We demonstrate RCTD provides substantial improvement in cell type assignment in Slide-seq data by accurately reproducing known cell type and subtype localization patterns in the cerebellum and hippocampus. We further show the advantages of RCTD by its ability to detect mixtures and identify cell types on an assessment dataset. Finally, we show how RCTD's recovery of cell type localization uniquely enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD has the potential to enable the definition of spatial components of cellular identity, uncovering new principles of cellular organization in biological tissue.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 37-39).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127336
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.