MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning approaches to universal and practical steganalysis

Author(s)
Nene, Ajinkya Kishore.
Thumbnail
Download1192967135-MIT.pdf (20.28Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kalyan Veeramachaneni.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Steganography is the process of hiding data inside of files while steganalysis is the process of detecting the presence of hidden data inside of files. As a concealment system, steganography is effective at safeguarding the privacy and security of information. Due to its effectiveness as a concealment system, bad actors have increasingly begun using steganography to transmit exploits or other malicious information. Steganography thus poses a significant security risk, demanding serious attention and emphasizing a need for universal and practical steganalysis models that can defend against steganography-based attack vectors. In this thesis, we provide a comprehensive review of steganography-enabled exploits and design a robust framework for universal and practical deep-learning steganalysis. As part of our framework, we provide new and practical steganalysis architectures, propose several data augmentation techniques which includes a novel adversarial-attack system, and develop a python library, StegBench, to enable dynamic and robust steganalysis evaluation. Altogether, our framework enables the development of practical and universal steganalysis models that can be used robustly in security applications to neutralize steganography-based threat models.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 121-125).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127469
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.