Show simple item record

dc.contributor.advisorRandall Davis.en_US
dc.contributor.authorMadiedo, Jennifer L.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-09-15T21:59:25Z
dc.date.available2020-09-15T21:59:25Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127470
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 116-118).en_US
dc.description.abstractDeveloping a computational account of human intelligence requires understanding and modeling human story understanding faculties, including the human ability to make predictions. When presented with a novel situation, people can generalize their past experiences and apply them to propose a reasonable prediction about potential outcomes of that situation. The goal of this work is to develop a novel approach to develop this reasoning capability. We present character alignment as a new approach to outcome prediction. We claim that if you can capture a character's behavior and motivations in a story, you can use that information to make predictions about a similar character in the future. Inspired by work on reasoning by analogy and story alignment, our system uses the character alignment approach to create representations of characters as it reads stories and uses those representations to predict what a character in a new story might do.en_US
dc.description.abstractOur representations are action oriented, i.e., focused on how a given character interacts with other characters and the specific actions they take. We claim that this focus on character representations is valuable in part for its efficiency: It enables reasoning with only key parts of stories rather than the entire story. To demonstrate this approach in action, we designed and developed OPERA, a system that makes predictions about story outcomes. Built on top of the Genesis system, OPERA gathers information about characters in the short stories that it reads (approx. 60-70 sentences long). For each story, the system creates representations for each character by extracting information about them and their interactions. This information includes their desires, the actions they take, and the goals they achieve. When prompted with a specific character in the story, the system uses its representation of characters to predict the outcome for that character.en_US
dc.description.abstractThis method has advantages over existing approaches, such as story alignment, because it focuses on key parts of the story (specifically those in character representations) and can combine and generalize information from multiple sources. This work gives Genesis the ability to efficiently draw connections from past experiences, recognize similarities, and make informed predictions..en_US
dc.description.statementofresponsibilityby Jennifer L. Madiedo.en_US
dc.format.extent118 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHow will it end? OPERA as an approach to predictionen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1192967483en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-09-15T21:59:25Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record