Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorMaeda, Tomohiroen_US
dc.contributor.otherProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.date.accessioned2020-09-15T22:00:28Z
dc.date.available2020-09-15T22:00:28Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127491
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 77-84).en_US
dc.description.abstractConventional imaging for health applications captures photons from the objects that are directly in the field of view of the camera. In this thesis, we develop computational frameworks to exploit scattered photons to image regions that are not directly visible to the camera. First, we will explore a new framework to model volumetric scattering with time-of- flight imaging to recover objects in scattering media with less need for calibrations. This technology can be applied to see under the skin. Second, we will exploit fluorescent tags, and quantum dots to image tagged objects around the corner for endoscopy with traditional cameras. We introduce a novel parametric approach to NLOS imaging for localizing tags around corners from radiometric measurements. The goals of the thesis are to develop novel approaches to model scattered light-transport and to demonstrate recovery of hidden objects, though scattering or around corners. The proposed technology can extend the scope of medical imaging.en_US
dc.description.statementofresponsibilityby Tomohiro Maeda.en_US
dc.format.extent84 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectProgram in Media Arts and Sciencesen_US
dc.titleComputational imaging with scattered photons to see inside the bodyen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.identifier.oclc1193024803en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciencesen_US
dspace.imported2020-09-15T22:00:27Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentMediaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record