MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigations in applied probability and high-dimensional statistics

Author(s)
Gaudio, Julia.
Thumbnail
Download1193027026-MIT.pdf (1.152Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
David Gamarnik and Patrick Jaillet.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis makes contributions to the areas of applied probability and high-dimensional statistics. We introduce the Attracting Random Walks model, which is a Markov chain model on a graph. In the Attracting Random Walks model, particles move among the vertices of a graph transition probabilities depending on the locations of the other particles. The model is designed so that transitions to more occupied vertices are more likely. We analyze the mixing time of the model under different values of the parameter governing the attraction. We additionally consider the repelling version of the model, in which particles are more likely to move to vertices with low occupancy. Next, we contribute to the methodology of Markov processes by studying convergence rates for Markov processes under perturbation. We specifically consider parametrized stochastically ordered Markov processes, such as queues. We bound the time until a given Markov process converges to stationary after its parameter experiences a perturbation. The following chapter considers the random instance Traveling Salesman Problem. Namely, n points (cities) are placed uniformly at random in the unit square. It was shown by Beardwood et al (1959) that the optimal tour length through these points, divided by [square root of] n, converges to a constant [2]. Determining the value of the constant is an open problem. We improve the lower bound over the original bound given in [2]. Finally, we study a statistical model: isotonic regression. Isotonic regression is the problem of estimating a coordinate-wise monotone function from data. We introduce the sparse version of the problem, and study it in the high-dimensional setting. We provide optimization-based algorithms for the recovery of the ground truth function, and provide guarantees for function estimation in terms of L2 loss.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 159-163).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127504
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.