MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the computational power of RNNs

Author(s)
Korsky, Samuel A.
Thumbnail
Download1196234132-MIT.pdf (298.0Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Robert C. Berwick.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent neural network architectures such as the basic recurrent neural network (RNN) and Gated Recurrent Unit (GRU) have gained prominence as end-to-end learning architectures for natural language processing tasks. But what is the computational power of such systems? We prove that finite precision RNNs with one hidden layer and ReLU activation and finite precision GRUs are exactly as computationally powerful as deterministic nice automata. Allowing arbitrary precision, we prove that RNNs with one hidden layer and ReLU activation are at least as computationally powerful as pushdown automata. If we also allow infinite precision, infinite edge weights, and nonlinear output activation functions, we prove that GRUs are at least as computationally powerful as pushdown automata. All results are shown constructively.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (page 27).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/127704
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.