MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SAL : a Self-Aware Learning system

Author(s)
Thrush, Tristan Andrew Fraser.
Thumbnail
Download1196238911-MIT.pdf (392.1Kb)
Alternative title
Self-Aware Learning system
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Patrick Winston and Randall Davis.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I take a step towards understanding how and why humans learn to solve problems about their solving of problems. I present a general-purpose neural reinforcement learning system called SAL, which can learn to think about its own problem solving, and use this capability to learn how to solve problems at another level. I show that SAL can use self-reference to articulate, and learn to articulate, its thoughts to a human, and internalize and apply a human's help, in natural language. I also demonstrate that SAL's abilities are enabled by an internal representation that shares important properties with, and is easily converted between, natural language. On the practical side, I argue that SAL can inform production question answering systems research. SAL can answer multi-step questions that are grounded in the world by extracting operational knowledge from pre-trained word embeddings. As an example, SAL knows how to use the action associated with \grab [the] diesel jug" to get closer to a solution, given the state of a physical world and a goal. And SAL can do this without any actual experience using (and without ever being told by a human about) any action associated with \grab" or the argument \diesel jug." SAL can do so with both very little training reward data and without assuming anything about the operational meaning of a particular lexical item, or composition of them, at first. Alternatively, typical neural reinforcement learning systems can not learn like SAL; they only work with a level of data that would be difficult to achieve in the real world. SAL's implementation, trained models, analysis code, and instructions, are at https://github.com/TristanThrush/sal. It is easy to add new problems (even in new domains) that you want SAL to learn.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 67-68).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/127705
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.