MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary and structural signatures of protein-coding function : synonymous acceleration, read-through, and structural impact of mutations

Author(s)
Wolf, Maxim,Ph. D.(Maxim Y.)Massachusetts Institute of Technology.
Thumbnail
Download1196090379-MIT.pdf (9.261Mb)
Other Contributors
Massachusetts Institute of Technology. Computational and Systems Biology Program.
Advisor
Manolis Kellis.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis I observe evolutionary signatures in coding regions to: (1) understand the sources of highly mutable coding regions in mammals; (2) to elucidate a new candidate function for a stop codon readthrough candidate gene, BRI3BP; and (3) to show how rapid sequence-based structure approximations can help predict the structural impact of amino-acid changes. (1) First, I searched for deviations from the evolutionary signatures of coding regions to recognize synonymous acceleration elements (SAEs) in protein coding genes. I showed that these are driven by an increased mutation rate, which persists in the human lineage, in otherwise evolutionarily-constrained protein-coding regions, providing an important resource to better characterize protein-coding constraint in mammals and within humans. (2) Second, I combined evolutionary signatures at the protein-coding and protein-folding level to characterize the functional implication of stop-codon readthrough in BRI3BP. I showed that this readthrough region has conserved spaced hydrophobic residues that pattern match to the -terminal helix forming a coiled-coil-like domain. This change alters BRI3BP function from pro-growth to pro-apoptotic, similarly to VEGF-A. This suggests that readthrough-triggered apoptosis may represent a general mechanism for limiting growth of cells with aberrant ribosomal termination. (3) Third, I used rapid protein-structure approximation of burial of residues based on protein sequence to predict the structural impact of amino acid alterations. I show that the prediction can be improved over using exclusively the hydrophobicity change of the residue. Overall my work demonstrates how evolutionary and structural signatures can be used to predict highly mutational gene regions, readthrough function and structural impact of mutation.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Computational and Systems Biology Program, 2019
 
Cataloged from the PDF of thesis.
 
Includes bibliographical references (pages 87-90).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/127716
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program
Publisher
Massachusetts Institute of Technology
Keywords
Computational and Systems Biology Program.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.