MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An injectable, biomaterial-based therapy to promote endogenous neural progenitor cells in a hemorrhagic stroke lesion

Author(s)
Love, Christopher J.,Ph.D.Massachusetts Institute of Technology.
Thumbnail
Download1196340056-MIT.pdf (22.33Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Myron Spector.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Stroke is the second leading cause of death and disability worldwide with prevalence and resulting costs projected to increase. There are few available treatments, and their applicability is limited to the type of stroke and the initial hours after onset. New treatments are needed to address post-stroke disability and the needs of survivors with a low quality of life. An emerging therapeutic concept is the direct injection of a biomaterial-based therapy into the stroke lesion to restore neural elements for improved function. The principal objective of this thesis was to evaluate the ability of an injectable, gelatin-based biomaterial (gelatin-hydroxyphenylpropionic acid, Gtn-HPA) incorporating epidermal growth factor (EGF) to increase the number of endogenous nestin-positive neural progenitor cells (NPCs) in the lesion. In a well-validated intracerebral hemorrhagic (ICH) stroke model in rats, NPCs were quantified and compared to ICH-only controls at 2 and 4 weeks post-injection.
 
At both time points, there was a ~10-fold increase in NPCs in the region of the biomaterial-treated lesion compared to the untreated control. Observations extended to 10 weeks post-injection revealed a persistence of the EGFbearing Gtn-HPA with continued infiltration of NPCs to a deeper extent into the biomaterial-filled lesion. To determine the effects of the specific biomaterial and growth factor combination, two additional groups were tested: an alternative hydrogel (RADA16 self-assembling peptides) incorporating EGF and an alternative mixture of growth factors extracted from endogenous blood platelets (platelet-rich plasma lysate) and incorporated into Gtn-HPA. Only Gtn-HPA incorporating EGF was able to increase significantly the number of NPCs in the stroke region. In a second objective, towards clinical translation, the target of the proposed therapy was characterized by examining the morphology and composition of human postmortem stroke brains.
 
In chronic hemorrhagic lesions, an atypical porous collagen matrix was observed--prompting further questions on the possible effect of lesion constituents on the injectable biomaterial. In a series of rheology experiments, a third objective was to determine the effects of blood elements on the gelation time and storage modulus of Gtn-HPA. Blood was found to impede gelation of the biomaterial--most likely through a catalase-promoted elimination of the catalyst that enables covalent crosslinking. These results inform the types of lesions amenable to therapy and the potential need to manage lesion constituents (e.g., by aspiration) prior to injection of the biomaterial. The results of this thesis motivate and guide further study in a large animal model to validate Gtn-HPA/EGF promotion of NPC infiltration of the ICH stroke lesion in a larger brain size and demonstrate the attendant improvement in function.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020
 
Cataloged from PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127726
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.