MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding electrochemistry at the Molecular scale : molecular dynamics methods and applications

Author(s)
Dwelle, Kaitlyn Anne.
Thumbnail
Download1197079438-MIT.pdf (6.314Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Adam P. Willard.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The relatively new field of nano-electrochemistry stands to enable more efficient energy storage and electrochemical techniques. However, traditional mean-field models which generally average over macroscopic detail may be inappropriate for understanding electrochemistry at the nanoscale. We propose a combination of methods for the molecular dynamics simulation of constant potential, electrochemically active devices and use these methods to reveal the importance of molecular character on nanoscale device behavior. For example, a macroscopic relationship between transference number and battery performance is shown not to hold up in nanoscale cells due to the nanoscale cell's ability to support significant deviations from electroneutrality. This result demonstrates the necessity of carefully reconsidering macroscopic phenomenology when designing nanoscale systems.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, May, 2020
 
Cataloged from the PDF of thesis.
 
Includes bibliographical references (pages 103-112).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127891
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.