MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explicit division and torsion points on superelliptic Curves and jacobians

Author(s)
Arul, Vishal.
Thumbnail
Download1197636351-MIT.pdf (533.4Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Bjorn Mikhail Poonen.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I study two problems in the arithmetic of superelliptic curves. By a superelliptic curve, I mean the smooth projective model of the affine plane curve y[superscript n] = f(x) where f(x) is separable, n is coprime to deg(f), and the characteristic of the ground field does not divide n. When n = 2, this is commonly referred to as a hyperelliptic curve. I first generalize Zarhin's formula for division by 2 [68] on hyperelliptic curves to the superelliptic case. Rather than divide by n, I invert the 1[zeta] endomorphism on the jacobian. My formula reduces to Zarhin's when n = 2. Next, I study torsion points on superelliptic curves. Work of Coleman [15] and Grant-Shaulis [29] together classifies all torsion points on the hyperelliptic curve y² = x[superscript d] + 1, where d >/= 5 is prime. I extend their results to the superelliptic curve y[superscript n] = x[superscript d] + 1, where n, d >/= 2 are coprime. Using a specialization argument, I also classify torsion points on a generic superelliptic curve, extending Theorem 7.1 of Poonen-Stoll [57] to the hyperelliptic case. In order to classify torsion points, I prove a result about Galois action on the p-torsion of the jacobian of y[superscript p] = x[superscript q]+1, where p and q are distinct primes. This problem is equivalent to a new p-adic congruence for Jacobi sums, which I state and prove. This congruence is related to (but does not follow from) a congruence of Uehara [63].
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 113-116).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127911
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.