Modeling Interfacial Electron Transfer in the Double Layer: The Interplay between Electrode Coupling and Electrostatic Driving
Author(s)
Limaye, Aditya M; Willard, Adam P.
DownloadSubmitted version (1.750Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
In this manuscript, we present a theoretical model for studying the population dynamics of electrochemical systems within the region of the electrical double layer. We formulate this model in a coordinate system that separately resolves both the transport of redox species in the direction perpendicular to the electrode surface and the thermal fluctuations of the solvent environment that drive electron transfer. This formulation enables us to explore how the observable characteristics of electrochemical systems are influenced by spatial variations in the electric fields and electronic couplings that are inherent to the double layer, especially under conditions of low ionic strength, where screening lengths are larger. We apply this model to highlight the fundamental interplay between two physical attributes of interfacial electrochemistry: electrode coupling and electrostatic driving. Using a simple model system designed to isolate this interplay, we demonstrate how variations in the location of electron transfer can lead to systematic changes to the electrochemical transfer coefficient. We also illustrate that for certain redox reactions, differences in electrostatic driving between products and reactants can lead to nonmonotonic current-voltage behavior. Copyright ©2019 American Chemical Society.
Date issued
2019-12Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of ChemistryJournal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)
Citation
Limaye, Aditya M. and Adam P. Willard, "Modeling Interfacial Electron Transfer in the Double Layer: The Interplay between Electrode Coupling and Electrostatic Driving." Journal of Physical Chemistry C 124, 2 (January 2020): 1352–1361 doi. 10.1021/acs.jpcc.9b08438 ©2019 Authors
Version: Original manuscript
ISSN
1932-7455