Show simple item record

dc.contributor.advisorR. John Hansman.en_US
dc.contributor.authorVascik, Parker D.(Parker Denys Neff)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2020-10-18T21:26:09Z
dc.date.available2020-10-18T21:26:09Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/128057en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2020en_US
dc.descriptionCataloged from the PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 195-205).en_US
dc.description.abstractUrban air mobility (UAM) refers to a set of vehicles and operational concepts that provide on-demand or scheduled air transportation services for passengers and cargo within a metropolitan area. Prior UAM systems based on helicopters or small aircraft did not achieve sustained, large-scale adoption. The goals of this thesis are: to identify the principal scaling constraints of UAM, to discern how the severity of these constraints varies with different implementation locations and operational concepts, and to assess the feasibility of large-scale UAM services in the United States subject to these constraints. Seven potential scaling constraints are identified through exploratory case studies of UAM operations in three U.S. cities. Of these constraints, the development of takeoff and landing areas (TOLAs) and the provision of air traffic control (ATC) services are proposed as principal near-term constraints and selected for detailed analysis.en_US
dc.description.abstractThe development of high-throughput, small-footprint TOLAs to enable UAM scaling in urban areas is evaluated as a multicommodity flow problem. TOLA design and aircraft performance attributes that enhance throughput per footprint are determined through tradespace analysis. TOLA throughput is found to be highly dependent on attributes of ATC, namely controller workload and separation minima. Estimates of maximum aircraft throughput capacity are developed for representative inner-city UAM TOLAs of various physical designs. The development of procedurally segregated airspace cutouts for UAM flight is shown to be a promising strategy to enable high-volume UAM operations within terminal airspace. Furthermore, four flight procedures are proposed to support UAM access to commercial airports under both instrument flight rules (IFR) and visual flight rules (VFR). Lastly, the magnitude of ATC restrictions on the scale of UAM operations is evaluated in the 34 largest U.S. metropolitan areas.en_US
dc.description.abstractThe degree to which ATC may constrain UAM scale is found to vary widely between these metropolitan areas potentially inhibiting service to over 75% of the population in the most restricted city but less than 15% in the least restricted city. The development of airspace cutouts for VFR UAM operations reduces this variation and increases population coverage from 65% to 80% in the median U.S. metropolitan area.en_US
dc.description.statementofresponsibilityby Parker D. Vascik.en_US
dc.format.extent256 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleSystems analysis of urban air mobility operational scalingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1199059939en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2021-02-22T21:20:08Zen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record