MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Insights into gene regulation by genome structure, phase separation and developmental signaling

Author(s)
Zamudio, Alicia V.(Alicia Viridiana Zamudio Monters de Oca)
Thumbnail
Download1199073234-MIT.pdf (22.27Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Richard A. Young.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Proper regulation of gene expression is essential to the developmental processes that give rise to hundreds of different cell types with unique cellular identities. Regulation of protein-coding and long non-coding RNA genes by RNA polymerase II is carried out by the coordinated action of transcription factors and cofactors. Transcription factors can be cell-type specific and bind cell-type specific gene regulatory regions called enhancers, which can be located far upstream or downstream from the gene they activate. The enhancer-bound factors can loop to the promoters of cell-type specific genes to enhance the levels of transcription of these genes, and studies described in this thesis have provided new insights into the factors that contribute to this looping process (Weintraub et al., 2017). Recent studies have revealed that super-enhancers, which contribute to regulation of genes with prominent roles in cell identity, form phase-separated condensates that compartmentalize and concentrate the transcription apparatus at these genes. This insight led us to test the idea that signaling factors, which bring information regarding the developmental environment of cells to the transcription apparatus, might preferentially interact with super-enhancers through condensate interactions that were not considered in previous studies of signaling. Our studies confirmed that super-enhancer condensate do indeed facilitate the preferential localization of signaling factors to genes with prominent roles in cell identity (Zamudio et al., 2019). Thus, the studies described in this thesis provide new insights into gene regulation by genome structuring, phase separation and developmental signaling.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2020
 
Cataloged from PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/128064
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.