MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimum-correction second-moment matching : theory, algorithms and applications

Author(s)
Lin, Jing,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1200048354-MIT.pdf (4.967Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Pierre F.J. Lermusiaux.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We address the problem of finding the closest matrix Ũ a given U under the constraint that a prescribed second-moment matrix P̃ must be matched, i.e.Ũ[T superscript]Ũ . We obtain a closed-form formula for the unique global optimizer Ũ for the full-rank case, which is related to U by an SPD (symmetric positive definite) linear transform. This result is generalized to rank-deficient cases as well as to infinite dimensions. We highlight the geometric intuition behind the theory and study the problem's rich connections to minimum congruence transform, generalized polar decomposition, optimal transport, and rank-deficient data assimilation. In the special case of P̃ = I, minimum-correction second-moment matching reduces to the well-studied optimal orthonormalization problem. We investigate the general strategies for numerically computing the optimizer, analyze existing polar decomposition and matrix square root algorithms. More importantly, we modify and stabilize two Newton iterations previously deemed unstable for computing the matrix square root, which can now be used to efficiently compute both the orthogonal polar factor and the SPD square root. We then verify the higher performance of the various new algorithms using benchmark cases with randomly generated matrices. Lastly, we complete two applications for the stochastic Lorenz-96 dynamical system in a chaotic regime. In reduced subspace tracking using dynamically orthogonal equations, we maintain the numerical orthonormality and continuity of time-varying base vectors. In ensemble square root filtering for data assimilation, the prior samples are transformed into posterior ones by matching the covariance given by the Kalman update while also minimizing the corrections to the prior samples.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020
 
Cataloged from PDF of thesis.
 
Includes bibliographical references (pages 77-81).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/128088
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.