MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chelating Phosphine Ligand Stabilized AuNPs in Methane Detection

Author(s)
Tang, Cen; Ku, Kang Hee; Luo, Shao-Xiong Lennon; Concellon Allueva, Alberto; Wu, You-Chi Mason; Lu, Ruqiang; Swager, Timothy M; ... Show more Show less
Thumbnail
DownloadAccepted version (680.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The capping reagent plays an essential role in the functional properties of gold nanoparticles (AuNPs). Multiple stimuli-responsive materials are generated via diverse surface modification. The ability of the organic ligand shell on a gold surface to create a porous shell capable of binding small molecules is demonstrated as an approach to detect molecules, such as methane, that would be otherwise difficult to sense. Thiols are the most studied capping ligands of AuNPs used in chemiresistors. Phosphine capping groups are usually seen as stabilizers in synthesis and catalysis. However, by virtue of the pyramidal shape of triarylphosphines, they are natural candidates to create intrinsic voids within the ligand shell of AuNPs. In this work, surface-functionalized (capped) AuNPs with chelating phosphine ligands are synthesized via two synthetic routes, enabling chemiresistive methane gas detection at sub-100 ppm levels. These AuNPs are compared to thiol-capped AuNPs, and studies were undertaken to evaluate structure-property relationships for their performance in the detection of hydrocarbons. Polymer overcoatings applied to the conductive networks of the functionalized AuNP arrays were shown to reduce resistivity by promoting the formation of conduction pathways with decreased core-core distance between nanoparticles. Observations made in the context of developing methane sensors provide insight relevant to applications of phosphine or phosphine-containing surface groups in functional AuNP materials.
Date issued
2020-08
URI
https://hdl.handle.net/1721.1/128153
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
ACS Nano
Publisher
American Chemical Society (ACS)
Citation
Tan, Cen et al. "Chelating Phosphine Ligand Stabilized AuNPs in Methane Detection." ACS Nano 14, 9 (August 2020): 11605–11612 © 2020 American Chemical Society
Version: Author's final manuscript
ISSN
1936-0851
1936-086X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.