MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physical symmetry enhanced neural networks

Author(s)
Jing, Li,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1201326165-MIT.pdf (6.051Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Marin Soljacic.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Artificial Intelligence (AI), widely considered "the fourth industrial revolution", has shown its potential to fundamentally change our world. Today's AI technique relies on neural networks. In this thesis, we propose several physical symmetry enhanced neural network models. We first developed unitary recurrent neural networks (RNNs) that solve gradient vanishing and gradient explosion problems. We propose an efficient parametrization method that requires [sigma] (1) complexity per parameter. Our unitary RNN model has shown optimal long-term memory ability. Next, we combine the above model with a gated mechanism. This model outperform popular recurrent neural networks like long short-term memory (LSTMs) and gated recurrent units (GRUs) in many sequential tasks. In the third part, we develop a convolutional neural network architecture that achieves logarithmic scale complexity using symmetry breaking concepts. We demonstrate that our model has superior performance on small image classification tasks. In the last part, we propose a general method to extend convolutional neural networks' inductive bias and embed other types of symmetries. We show that this method improves prediction performance on lens-distorted image
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, February, 2020
 
Cataloged from student-submitted PDF version of thesis
 
Includes bibliographical references (pages 91-99).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/128294
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.