MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Environmental remediation and biofuel production through nanoparticle stimulation of yeast

Author(s)
Pandit, Shalmalee(Shalmalee Dhananjay)
Thumbnail
Download1201259666-MIT.pdf (10.27Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biological Engineering.
Advisor
Angela M. Belcher.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Artificially photosynthetic systems aim to store solar energy and chemically reduce carbon dioxide. These systems have been developed in order to use light to drive processes for carbon fixation into biomass and/or liquid fuels. We have developed a hybrid-biological system that manages both genetically controlled generation of products along with the photoactivability of a semiconductor system. We show an increase in the production of ethanol, a common biofuel, through the electron transfer stimulated by biologically produced cadmium sulfide nanoparticles and light. This work provides a basis on which to improve the production of many metabolites and products through endogenously produced nanoparticles.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Biological Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 43-47).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/128313
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.