MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Defining scalable high performance programming with DEF

Author(s)
Leiserson, William Mitchell.
Thumbnail
Download1201306991-MIT.pdf (18.95Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Nir Shavit.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Performance engineering is performed in languages that are close to the machine, especially C and C++, but these languages have little native support for concurrency. We're deep into the multicore era of computer hardware, however, meaning that scalability is dependent upon concurrent data structures. Contrast this with modern systems languages, like Go, that provide support for concurrency but incur invisible, sometimes unavoidable, overheads on basic operations. Many applications, particularly in scientific computing, require something in between. In this thesis, I present DEF, a language that's close to the machine for the sake of performance engineering, but which also has features that provide support for concurrency. These features are designed with costs that don't impede code that doesn't use them, and preserve the flexibility enjoyed by C programmers in organizing memory layout and operations. DEF occupies the excluded middle between the two categories of languages and is suitable for high performance, scalable applications.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2020
 
Cataloged from PDF of thesis.
 
Includes bibliographical references (pages 149-156).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/128317
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.