MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of an omnidirectional soft tactile sensor with applications in leak detection

Author(s)
Okamoto, Tyler Takeo.
Thumbnail
Download1201692531-MIT.pdf (15.13Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Kamal Youcef-Toumi.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Soft robots have many unique geometries requiring different tactile feedback mechanisms. In order to respond to their environment, soft robots would benefit by having multi-axis sensors that can determine how a surface is being contacted. As a particular application, previous soft sensor designs are used to detect leaks in active water pipes, but have difficulty differentiating leaks from pipe joints and obstacles. This thesis presents the design, fabrication and experimental testing of soft, multi axis deformation sensors. In the first approach, various geometries of a piezoresistive rubber sensor were tested, and the soft-bodied drone for mapping the interior of pipes was demonstrated in a field test conducted in Matio, Brazil. This demo yielded some design realizations, which led to changes in the sensing technology in order to provide more detail about the interior pipe features. Thus, highly flexible conductive fabric and silicone capacitors were investigated as the capacitance sensing element, which exhibits linearity, faster response time, and less hysteresis. Multiple copies of this sensor were arranged in a particular way to decouple the four deformation modes of the material: uniaxial tension, bending, compressive pressure, and torsion. Furthermore, this sensor is well-suited for the detection of leaks, obstacles, and pipe joints in active water pipes.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, June, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 97-100).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/128334
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.