MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequential decision making for automatic modulation classification

Author(s)
Waltman, Nicholas(Nicholas W.)
Thumbnail
Download1220877358-MIT.pdf (2.277Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomas Palacios and Rebecca Russell.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this paper, an algorithm is introduced to use deep learning to perform automatic modulation classification in a sequential manner. At each time step, a decision is made whether to request more data or to return a classification decision. This allows for the data, and therefore time, needed to make a decision to be minimized while maintaining a high degree of accuracy. The performance of this algorithm is studied using multiple strategies and lists of modulations to be classified.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, June, 2019
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 41-42).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/128574
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.