Validation of ion and electron scale gyrokinetic simulations in an NSTX H-mode and comparisons with a synthetic diagnostic for high-k scattering
Author(s)
Ruiz Ruiz, Juan,Ph. D.Massachusetts Institute of Technology.
Download1221003839-MIT.pdf (22.31Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Anne E. White.
Terms of use
Metadata
Show full item recordAbstract
In this thesis I perform an extensive validation study in an NSTX NBI-heated H-mode discharge, predicting that electron thermal transport can be entirely explained by shortwavelength electron-scale turbulence fluctuations driven by the electron temperature gradient mode (ETG), both in conditions of strong and weak ETG turbulence drive. For the first time, local, nonlinear gyrokinetic simulation carried out with the GYRO code [98] reproduce the experimental levels of electron thermal transport, the frequency spectrum of electron-scale turbulence, the shape of the wavenumber spectrum and the ratio of fluctuation levels between strongly driven and weakly driven ETG turbulence conditions. Ion thermal transport is very close to neoclassical levels predicted by NEO [215], consistent with stable ion-scale turbulence predicted by GYRO. Quantitative comparisons between high-k fluctuation measurements [65] and simulations are enabled via a novel synthetic high-k diagnostic implemented for GYRO in real-space. A new type of simulation resolving the full ETG spectrum in an unusually large domain (L[subscript r], L[subscript theta]) ~ (20, 20)[subscript rho subscript s] is required to quantitatively compare with the measured frequency spectra of the high-k density fluctuations. Simulations that best match all experimental observables predict that the measured high-k turbulence is closer to the streamer peak of the density fluctuation spectrum than was previously believed. The frequency spectra characteristics of electron-scale turbulence (spectral peak and width) can be consistently reproduced by the synthetic spectra, but these reveal not to be critical constraints on the simulations. The shape of the high-k wavenumber spectrum and the fluctuation level ratio between the strong and weak ETG conditions can also be simultaneously matched by electron-scale simulations within sensitivity scans about the experimental profile values, and result to be great discriminators of the simulations analyzed. Validation metrics are used to discriminate between simulations, are were able to isolate the effect of safety factor and magnetic shear to match the shape of the measured fluctuation wavenumber spectrum. Together, electron thermal transport comparisons and quantitative agreement of electron-scale turbulence spectra give the strongest experimental evidence to date supporting ETG-driven turbulence fluctuations as the main mechanism driving anomalous electron thermal transport in the outer-core of modest [beta] NSTX NBI-heated H-modes.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2019 Cataloged from student-submitted PDF of thesis. Includes bibliographical references (pages 299-311).
Date issued
2019Department
Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.