MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of cooling rate during solidification of Aluminum - chromium alloy

Author(s)
Muthusamy, Gautham.
Thumbnail
Download1200758446-MIT.pdf (2.962Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Antoine Allanore.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Controlling the distribution of alloying elements in aluminum casting and designing new processing practices are supported by an enhanced understanding of the thermodynamics and kinetics of solidification at industrial scales. While the behavior of eutectic forming elements such as copper has received a lot of attention, the interactions of peritectic-forming elements such as chromium is understudied. We herein use a time-dependent nucleation model for the calculation of the incubation time of nuclei in the liquid. This characteristic time is computed at various temperatures, and the results are presented in the form of a time-temperature diagram. Liquid phase thermodynamics of dilute compositions in the aluminum-chromium system are experimentally informed using the electrochemical potential difference method. Thermodynamic data obtained from these investigations are used to inform physical properties of the aluminum-chromium melt. The aforementioned time-temperature diagrams are recalculated using experimental data and theoretical cooling rates for phase selection are calculated. Critical cooling rates calculated from the model are applied to industrially relevant practices such as DC casting and Twin roll casting.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, May, 2020
 
Cataloged from the official PDF of thesis. Page 86 blank.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/128584
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.