Show simple item record

dc.contributor.advisorAsegun Henry.en_US
dc.contributor.authorAmy, Caleb(Caleb A.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2021-01-05T23:11:47Z
dc.date.available2021-01-05T23:11:47Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/128992
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 149-158).en_US
dc.description.abstractAs the cost of renewable energy falls below fossil fuels, the key barrier to widespread sustainable electricity has become availability on demand. Energy storage can enable dispatchable renewables, but only with drastic cost reductions compared to current batteries. In this thesis, I investigate an electricity storage concept that stores electricity as sensible heat in an extremely hot liquid (>2000°C) and uses multi-junction photovoltaics (MPV) as a heat engine to convert it back to electricity on demand hours, or days, later. In addition to a technoeconomic analysis, this thesis focuses experimentally on heating, liquid containment, and pumping. The transfer of the storage liquid is key because it enables conversion to and from electricity and compact, efficient heat transfer. However, operating at these extreme temperatures introduces many practical challenges, so several novel solutions related to containment and pumping are investigated including high-performance heaters, sealing a large multi-part tank with affordable materials, and pumping above 2000°C. The key result is that although affordable silicon can be contained in affordable graphite and pumped at these temperatures, temperature variation in the system causes it the graphite infrastructure to rapidly dissolve and ultimately fail in a matter of hours. Alternative embodiments are proposed with recommendations on areas of future work. The key takeaway from the technoeconomic modeling is that integrating low-cost thermal storage with an inexpensive heat engine can enable an economical approach to electricity storage, even without high round trip efficiencies. Thus, despite the challenges, future work is warranted.en_US
dc.description.statementofresponsibilityby Caleb Amy.en_US
dc.format.extent158 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThermal energy grid storage : liquid containment and pumpingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1227040682en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2021-01-05T23:11:46Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record