Show simple item record

dc.contributor.advisorPeter Szolovits.en_US
dc.contributor.authorJin, Di,Ph.D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2021-01-05T23:12:27Z
dc.date.available2021-01-05T23:12:27Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129004
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 189-217).en_US
dc.description.abstractTeaching machines to understand human language is one of the most elusive and long-standing challenges in Natural Language Processing (NLP). Driven by the fast development of deep learning, state-of-the-art NLP models have already achieved human-level performance in various large benchmark datasets, such as SQuAD, SNLI, and RACE. However, when these strong models are deployed to real-world applications, they often show poor generalization capability in two situations: 1. There is only a limited amount of data available for model training; 2. Deployed models may degrade significantly in performance on noisy test data or natural/artificial adversaries. In short, performance degradation on low-resource tasks/datasets and unseen data with distribution shifts imposes great challenges to the reliability of NLP models and prevent them from being massively applied in the wild. This dissertation aims to address these two issues.en_US
dc.description.abstractTowards the first one, we resort to transfer learning to leverage knowledge acquired from related data in order to improve performance on a target low-resource task/dataset. Specifically, we propose different transfer learning methods for three natural language understanding tasks: multi-choice question answering, dialogue state tracking, and sequence labeling, and one natural language generation task: machine translation. These methods are based on four basic transfer learning modalities: multi-task learning, sequential transfer learning, domain adaptation, and cross-lingual transfer. We show experimental results to validate that transferring knowledge from related domains, tasks, and languages can improve the target task/dataset significantly. For the second issue, we propose methods to evaluate the robustness of NLP models on text classification and entailment tasks.en_US
dc.description.abstractOn one hand, we reveal that although these models can achieve a high accuracy of over 90%, they still easily crash over paraphrases of original samples by changing only around 10% words to their synonyms. On the other hand, by creating a new challenge set using four adversarial strategies, we find even the best models for the aspect-based sentiment analysis task cannot reliably identify the target aspect and recognize its sentiment accordingly. On the contrary, they are easily confused by distractor aspects. Overall, these findings raise great concerns of robustness of NLP models, which should be enhanced to ensure their long-run stable service.en_US
dc.description.statementofresponsibilityby Di Jin.en_US
dc.format.extent217 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleTransfer learning and robustness for natural language processingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1227042422en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2021-01-05T23:12:26Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record