MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modifiable stability and maneuverability of high speed unmanned underwater vehicles (UUVs) through bioinspired control fins

Author(s)
Winey, Nastasia Elizabeth.
Thumbnail
Download1227044510-MIT.pdf (8.311Mb)
Other Contributors
Joint Program in Oceanography/Applied Ocean Science and Engineering.
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Woods Hole Oceanographic Institution.
Advisor
Michael Triantafyllou and Dana Yoerger.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Underwater Vehicles generally have control fins located only near their aft end, for making controllable changes in directions. This design allows for stability of control; however, the turns are typically large in comparison to the vehicle body length. Some bony fish, such as tuna, on the other hand, have deployable ventral and dorsal fins located towards the front of their body, in addition to their other fins. Their deployable fins allow them to modulate their hydrodynamic behavior in response to their environment. Tunas keep these fins retracted during steady cruising, and then deploy them during rapid maneuvers. However, the details of these hydrodynamic effects are not well understood. To investigate this phenomena, using a REMUS 100 as a model, a pair of vertical fins was added at different hull positions, to investigate the effects of fin location on the horizontal plane hydrodynamics, through: stability parameters, nonlinear simulation, and towing tank experiments. Depending on the added fin location, the stability of the vehicle changed, thereby affecting the maneuverability. As fins were placed further forward on the vehicle, maneuverability increased, with effects tapering off at 0.2 BL ahead of the vehicle's center of buoyancy. This investigation explored how rigid underwater vehicles could benefit from added fins, without drastically changing the design of current vehicles.
Description
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), September, 2020
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 73-74).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129025
Department
Joint Program in Oceanography/Applied Ocean Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Woods Hole Oceanographic Institution
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Oceanography/Applied Ocean Science and Engineering., Mechanical Engineering., Woods Hole Oceanographic Institution.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.