Show simple item record

dc.contributor.advisorAngela M. Belcher.en_US
dc.contributor.authorHuang, Shengnan,Ph.D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2021-01-05T23:14:03Z
dc.date.available2021-01-05T23:14:03Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129028
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 139-147).en_US
dc.description.abstractFluorescence imaging offers high spatio-temporal resolution, low radiation dosage exposure, and low cost among all the available imaging modalities, for example, magnetic resonance imaging, computerized tomography and positron emission tomography. Imaging probes of high emissivity and photostability are the key to achieving fluorescence imaging with high signal-to-background ratio (SBR). One promising approach to developing highly bright and stable imaging probes is through surface plasmon enhanced fluorescence. In the first part of the thesis, we develop a fluorescent probe with high site-specificity and emission efficiency by exploiting the targeting-specificity of M13 virus and co-assembling plasmonic nanoparticles and visible dye molecules on the viral capsid. Practical factors controlling fluorescence enhancement, such as nanoparticle size and dye-to-nanoparticle distance, are studied in this project. Lastly, the highly fluorescent probe is applied for in vitro staining of E.en_US
dc.description.abstractcoli. The methodology in this work is amendable to developing a wide range of affinity-targeted fluorescent probes using biotemplates. Compared to visible and near infrared spectrum, short-wave infrared (SWIR, 900-1700 nm) spectrum promises high spatial resolution and deep tissue penetration for fluorescence imaging of biological system, owning to low tissue autofluorescence and suppressed tissue scattering at progressively longer wavelengths. In the second part of the thesis, a bright SWIR imaging probe consisting of small SWIR dyes and gold nanorods is developed for in vivo imaging. Fluorescence enhancement is optimized by tuning the dye density on the gold nanorod surface. The SWIR imaging probes are applied for in vivo imaging of ovarian cancer. The effect of targeting modality on intratumor distribution of the imaging probes is studied in two different orthotopic ovarian cancer models.en_US
dc.description.abstractLastly, we demonstrate that the plasmon enhanced SWIR imaging probe has great potential for fluorescence imaging-guided surgery by showing its capability to detect submillimeter-sized tumors. Apart from enhancing the SWIR down-conversion emission above, surface plasmon enhanced SWIR up-conversion emission is another promising approach to achieving "autofluorescence-free" imaging with minimal tissue scattering. In the third part of the thesis, we use gold nanorods to enhance the up-conversion emission of small SWIR dyes. The mechanism of surface plasmon enhanced up-conversion emission is studied. The up-conversion fluorescence shows much higher SBR than down-conversion fluorescence in non-scatting biological solution and scatting medium. Lastly, we demonstrate in vivo imaging for the first-time using SWIR up-conversion fluorescence with exceptional image contrast.en_US
dc.description.statementofresponsibilityby Shengnan Huang.en_US
dc.format.extent147 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleSurface plasmon enhanced fluorescence for biological imaging : from visible to short-wave infrareden_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.identifier.oclc1227032000en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Materials Science and Engineeringen_US
dspace.imported2021-01-05T23:14:01Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMatScien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record