Show simple item record

dc.contributor.advisorMichael T. Laub.en_US
dc.contributor.authorLite, Thúy-Lan Võ.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2021-01-05T23:14:24Z
dc.date.available2021-01-05T23:14:24Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129035
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractProtein-protein interaction specificity is often encoded at the primary sequence level, and by just a few interfacial residues. Collectively, these residues have both positive and negative roles, promoting a desired, cognate interaction and preventing non-cognate interactions, respectively. However, for most protein-protein interactions, the contributions of individual specificity residues are poorly understood and often obscured by robustness and degeneracy of protein interfaces. Using bacterial toxin-antitoxin systems as a model, we use a variant of deep mutational scanning to dissect the positive and negative contributions of antitoxin residues that dictate toxin specificity. By screening a combinatorially complete library of antitoxin variants, we uncover a distribution of fitness effects for individual interface mutations measured across hundreds of genetic backgrounds. We show that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, we argue that the wild-type antitoxin may be optimized for specificity, because mutations that further destabilize the non-cognate interaction also weaken the cognate interaction. No mutations strengthen the cognate interaction. By comparing crystal structures of paralogous complexes, we provide a structural rationale for all of these observations. Finally, we use a library approach to identify hundreds of novel systems that are insulated from their parental systems, and that carry only two mutations - a negative specificity element on the toxin, and one on the antitoxin. This result demonstrates that highly similar (and in this case, nearly identical) complexes can be insulated using compensatory mutations of individually large effect. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.en_US
dc.description.statementofresponsibilityby Thúy-Lan Võ Lite.en_US
dc.format.extent109 agesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleThe genetic landscape of protein-protein interaction specificityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.identifier.oclc1200498190en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biologyen_US
dspace.imported2021-01-05T23:14:23Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record