Show simple item record

dc.contributor.advisorJonathan P. How and Alberto Rodriguez.en_US
dc.contributor.authorEverett, Michael F.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2021-01-05T23:15:33Z
dc.date.available2021-01-05T23:15:33Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129052
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 143-163).en_US
dc.description.abstractToday's robots are designed for humans, but are rarely deployed among humans. This thesis addresses problems of perception, planning, and safety that arise when deploying a mobile robot in human environments. A first key challenge is that of quickly navigating to a human-specified goal - one with known semantic type, but unknown coordinate - in a previously unseen world. This thesis formulates the contextual scene understanding problem as an image translation problem, by learning to estimate the planning cost-to-go from aerial images of similar environments. The proposed perception algorithm is united with a motion planner to reduce the amount of exploration time before finding the goal. In dynamic human environments, pedestrians also present several important technical challenges for the motion planning system. This thesis contributes a deep reinforcement learning-based (RL) formulation of the multiagent collision avoidance problem, with relaxed assumptions on the behavior model and number of agents in the environment. Benefits include strong performance among many nearby agents and the ability to accomplish long-term autonomy in pedestrian-rich environments. These and many other state-of-the-art robotics systems rely on Deep Neural Networks for perception and planning. However, blindly applying deep learning in safety-critical domains, such as those involving humans, remains dangerous without formal guarantees on robustness. For example, small perturbations to sensor inputs are often enough to change network-based decisions. This thesis contributes an RL framework that is certified robust to uncertainties in the observation space.en_US
dc.description.statementofresponsibilityby Michael F. Everett.en_US
dc.format.extent163 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAlgorithms for robust autonomous navigation in human environmentsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1227040873en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2021-01-05T23:15:32Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record