Show simple item record

dc.contributor.advisorLaurie A. Boyer.en_US
dc.contributor.authorDemuren, Olukunle O.(Olukunle Oluseyi)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2021-01-05T23:15:57Z
dc.date.available2021-01-05T23:15:57Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129059
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractUnderstanding how transcription factors (TFs) control gene expression programs is critical for determining the genetic pathways responsible for development. Heart development is particularly sensitive to precise control of gene programs as faulty regulation leads to congenital heart defects (CHD), the leading cause of infant mortality. Although sets of TFs have known roles in heart development, in most cases, we lack a fundamental understanding of how these binding events regulate cell specification. To identify potential key regulatory TFs, we used the Assay for Transposase-Accessible Chromatin (ATAC-seq) to map changes in chromatin accessibility and integrated these data with maps of histone modification patterns and gene expression across several stages of embryonic stem cell (ESC) differentiation toward cardiomyocytes (CMs). Based on bioinformatic analysis of these data, we identified the TEA domain family (TEAD) TF TEAD1 as a candidate regulator of enhancer activation during cardiac-lineage commitment. We then used an inducible degron-tag strategy to conditionally deplete TEAD1 and observed an abnormal beating phenotype in CMs. Further mechanistic studies revealed that TEAD1 was necessary for the activity of a subset of cardiac enhancers putatively linked to cell-cell contacts. These data have allowed us to characterize a potential link between extracellular signaling and cardiac contraction and morphogenesis during development.en_US
dc.description.statementofresponsibilityby Olukunle O. Demuren.en_US
dc.format.extent136 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleMolecular mediators of cardiac-specific enhancer activationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.identifier.oclc1227031178en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biologyen_US
dspace.imported2021-01-05T23:15:56Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record