Show simple item record

dc.contributor.advisorJeffrey P. Donnelly.en_US
dc.contributor.authorWallace, Elizabeth Jane.en_US
dc.contributor.otherJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.coverage.spatialnwbf---en_US
dc.date.accessioned2021-01-05T23:16:12Z
dc.date.available2021-01-05T23:16:12Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129063
dc.descriptionThesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 211-226).en_US
dc.description.abstractAtlantic hurricanes threaten growing coastal populations along the U.S. coastline and in the Caribbean islands. Unfortunately, little is known about the forces that alter hurricane activity on multi-decadal to centennial timescales. This thesis uses proxy development and proxy-model integration to constrain the spatiotemporal variability in hurricane activity in the Bahama Archipelago over the past millennium. I present annually-resolved archives of storm activity stretching over the past 1000 to 1500 years in sediment cores from blue holes on three islands in the Bahama Archipelago: South Andros Island, Long Island, and Middle Caicos Island. I explore the sensitivity of each site to coarse-grained sediment deposition for modern storms. I find that the local geomorphologic conditions and the angle of approach and size of passing storms play a more important role in inducing coarse-grained sediment transport than storm intensity.en_US
dc.description.abstractAll three paleorecords capture multi-decadal and longer periods of elevated hurricane activity over the past millennium. Dramatic differences between these records suggest localized controls on the hurricane patterns observed by each island. Thus, compiling the records from this thesis together more accurately captures regional variations in hurricane strikes. Integrating our new Bahama Archipelago compilation with compiled paleohurricane records from the U.S. coastline indicates shifting patterns of hurricane activity over the past millennium between the Gulf Coast and the Bahama Archipelago/New England. I attribute these shifting storm patterns to changes in local environmental conditions and/or large-scale variations in hurricane tracks. Finally, I address whether variability in hurricane strikes observed in Bahamian paleohurricane records is related to climate or random variability.en_US
dc.description.abstractUsing a large suite of synthetic storms run over past millennium climate, I generate 1000 pseudo paleohurricane records containing centennial-scale signal like our proxy reconstructions. However, the signal observed in any individual record of paleohurricane activity from the Bahama Archipelago is driven more by random variability in hurricane tracks than by climate. This thesis lays the groundwork for creating high-resolution paleohurricane records from coastal karst basins and using hurricane models to inform our interpretations of these records.en_US
dc.description.statementofresponsibilityby Elizabeth Jane Wallace.en_US
dc.format.extent226 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleHigh resolution sedimentary archives of past millennium hurricane activity in the Bahama Archipelagoen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.identifier.oclc1227037356en_US
dc.description.collectionPh.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)en_US
dspace.imported2021-01-05T23:16:11Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEAPSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record