MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online and offline learning in operations

Author(s)
Wang, Li
Thumbnail
Download1227096890-MIT.pdf (1.485Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
David Simchi-Levi.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With the rapid advancement of information technology and accelerated development of data science, the importance of integrating data into decision-making has never been stronger. In this thesis, we propose data-driven algorithms to incorporate learning from data in three operations problems, concerning both online learning and offline learning settings. First, we study a single product pricing problem with demand censoring in an offline data-driven setting. In this problem, a retailer is given a finite level of inventory, and faces a random demand that is price sensitive in a linear fashion with unknown parameters and distribution. Any unsatisfied demand is lost and unobservable. The retailer's objective is to use offline censored demand data to find an optimal price, maximizing her expected revenue with finite inventories.
 
We characterize an exact condition for the identifiability of near-optimal algorithms, and propose a data-driven algorithm that guarantees near-optimality in the identifiable case and approaches best-achievable optimality gap in the unidentifiable case. Next, we study the classic multi-period joint pricing and inventory control problem in an offline data-driven setting. We assume the demand functions and noise distributions are unknown, and propose a data-driven approximation algorithm, which uses offline demand data to solve the joint pricing and inventory control problem. We establish a polynomial sample complexity bound, the number of data samples needed to guarantee a near-optimal profit. A simulation study suggests that the data-driven algorithm solves the dynamic program effectively. Finally, we study an online learning problem for product selection in urban warehouses managed by fast-delivery retailers. We distill the problem into a semi-bandit model with linear generalization.
 
There are n products, each with a feature vector of dimension T. In each of the T periods, a retailer selects K products to offer, where T is much greater than T or b. We propose an online learning algorithm that iteratively shrinks the upper confidence bounds within each period. Compared to the standard UCB algorithm, we prove the new algorithm reduces the most dominant regret term by a factor of d, and experiments on datasets from Alibaba Group suggest it lowers the total regret by at least 10%..
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, September, 2020
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 213-219).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129080
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.