Show simple item record

dc.contributor.advisorMarija Ilic.en_US
dc.contributor.authorAgrawal, Janak.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-01-06T17:38:50Z
dc.date.available2021-01-06T17:38:50Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129082
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-83).en_US
dc.description.abstractWith multiple energy sources, diverse energy demands, and heterogeneous socioeconomic factors, energy systems are becoming increasingly complex. Multifaceted components have non-linear dynamics and are interacting with each other as well as the environment. In this thesis, we model components in terms of their own internal dynamics and output variables at the interfaces with the neighboring components. We then propose to use a distributed estimation method for obtaining the parameters of the the component's internal model based on the measurements at its interfaces. We check whether theoretical conditions for distributed estimation approach are met and validate the results obtained. The estimated parameters of the system can then be used for advanced control purposes in the HVAC system. We also use the measurements at the terminals to model and verify the components in the energy-space which is a novel approach proposed by our group. The energy space approach reflects conservation of power and rate of change of reactive power. Both power and rate of change of generalized reactive power are obtained from measurements at the input and output ports of the components by measuring flows and efforts associated with their ports. A pair of flow and efforts is measured for electrical and gas ports, as well as for fluids. We show that the energy space model agrees with the conventional state space model with a high accuracy and that standard measurements available in a commercial HVAC can be used for calculating the interaction variables in the energy space model. A novel finding is that unless measurements of both flow and effort variables is used, the sub-model representing rate of change of reactive power can not be validated. This implies that commonly used models in engineering which assume constant effort variables may not be sufficiently accurate to support most efficient control of complex interconnected systems comprising multiple energy conversion processes.en_US
dc.description.statementofresponsibilityby Janak Agrawal.en_US
dc.format.extent83 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDistributed parameter estimation for complex energy systemsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1227274030en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-01-06T17:38:49Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record