Show simple item record

dc.contributor.advisorDavid Sontag.en_US
dc.contributor.authorBoominathan, Soorajnath.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-01-06T17:41:52Z
dc.date.available2021-01-06T17:41:52Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129132
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 137-141).en_US
dc.description.abstractRising antibiotic resistance rates pose a serious public health threat and are largely driven by overuse and inappropriate use of antibiotics. Antibiotic stewardship efforts have been established around the world to improve prescription practices, but further optimization of antibiotic usage is still needed. Improvement is particularly necessary in the empiric treatment setting, the period of time immediately after a patient presents with an infection, during which clinicians must select a treatment without microbiological testing results. In this thesis, we develop methods to learn treatment policies for empiric antibiotic prescription that are tailored to individual characteristics. We present three policy learning approaches and evaluate them in the setting of uncomplicated urinary tract infections (UTIs) using data from two Boston-area hospitals. All three approaches learn policies that significantly improve over clinicians and practice guidelines with respect to rates of inappropriate antibiotic therapy (IAT) and broad spectrum antibiotic usage, and are able to trade off between these two outcomes as desired. We then address considerations important for deploying such learned policies as clinical decision support tools in real-world medical settings. We present techniques for learning treatment policies with the ability to defer to clinician decisions and strategies for improving the interpretability and transparency of the learned policies. We are able to successfully derive an effective, clinically intuitive treatment policy that uses fewer than 20 features. Even after accounting for several real-world treatment considerations, this policy is able to reduce rates of IAT by 20% and broad spectrum usage by nearly 50% relative to clinicians. We hope that the work presented in this thesis provides a meaningful step towards using machine learning to improve antibiotic stewardship practices in the future.en_US
dc.description.statementofresponsibilityby Soorajnath Boominathan.en_US
dc.format.extent141 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLearning treatment policies for empiric antibiotic prescriptionen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1227274661en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-01-06T17:41:52Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record