MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

De-identification of free-text clinical notes

Author(s)
Lin, Jing,M. Eng.Massachusetts Institute of Technology.
Thumbnail
Download1227276464-MIT.pdf (796.2Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Alistair Johnson.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Clinical notes contain rich information that is useful in medical research and investigation. However, clinical documents often contain explicit personal information that is protected by federal laws. Researchers are required to remove these personal identifiers before publicly release the notes, a process known as de-identification. In recent years, the healthcare community has initiated several competitions to expedite the development of automated de-identification systems. Notably, models built using recurrent neural networks achieved state-of-the-art performance on the de-identification task. Since the competition, new architectures based on transformers have been developed with excellent performance on general domain natural language processing tasks. Examples include BERT and RoBERTa. In this work, we evaluated de-identification using different choices of bidirectional transformer models and classifiers. Further, we developed a hybrid system that incorporates rule-based features into the bidirectional transformer model. Our results demonstrated state-of-the-art performance with an average 98.73% binary token F1 score, a 0.45% increase from current baseline models.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 71-73).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129134
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.