Show simple item record

dc.contributor.advisorDavid Sontag.en_US
dc.contributor.authorGopinath, Divya,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-01-06T18:31:32Z
dc.date.available2021-01-06T18:31:32Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129149
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 163-175).en_US
dc.description.abstractElectronic health records (EHRs) have irrevocably changed the practice of medicine by systematizing the collection of patient-level data. However, clinicians currently spend more time documenting information in EHRs than interacting directly with patients, and have adapted to time-intensive note-writing by authoring free-text notes overloaded with jargon and acronyms. Clinical notes are therefore difficult to parse and largely unstructured. This negatively impacts the ability of EHR systems to convey information between different clinicians and institutions, to communicate medical findings to patients, and to allow for programmatic ingestion of data to derive further automatically-learned insights. In this thesis, we present a new EHR system that addresses these problems by using novel machine learning methods to streamline the processes by which clinicians enter in new information and surface relevant details from past medical records. Our intelligent interface aids physicians as they type, allowing for automatic suggestion and live-tagging of clinical concepts to alleviate documentation burden, while simultaneously enabling clinical decision support and contextual information synthesis. Furthermore, as clinicians craft notes we automatically structure and curate their free-text inputs, allowing for further data-driven innovation and improvement. This EHR can reduce physician burnout, decrease diagnostic error, and improve patient outcomes, all while collecting a corpus of clean, labelled clinical data. Our system is currently deployed live at the Beth Israel Deaconess Medical Center Emergency Department and is in use by doctors.en_US
dc.description.statementofresponsibilityby Divya Gopinath.en_US
dc.format.extent175 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleML-driven clinical documentationen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1227275442en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-01-06T18:31:31Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record