Show simple item record

dc.contributor.advisorJoel Voldman.en_US
dc.contributor.authorLiao, Wei,S.M.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-01-06T18:33:09Z
dc.date.available2021-01-06T18:33:09Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129183
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 97-105).en_US
dc.description.abstractMicrofluidic Organs-on-chips (OOC) technology hold great promise for advancing the understanding of blood-brain-barrier (BBB) physiology and investigating BBB dysfunction in central nervous system diseases. It can provide high physiological relevance through engineering a range of system parameters. However, the resulting system can be hard to operate, have inadequate robustness and limited throughput, which is a major challenge that must be overcome before its widespread acceptance by both basic and applied research area. This thesis proposed a system which is aimed at solving this particular challenge of microfluidic OOC systems by having the open-well design to ease the process of liquid handling and allows facile assay while maintaining the high biological sophistication it can model for the BBB (microarchitecture, vascular perfusion etc.). A simulation model was developed to optimize the device design and predict the distribution of one vital chemical stimulating signal for vasculogenesis -- Vascular Endothelial Growth Factor (VEGF), where distinctive isoform-specific transport profiles were found due to the binding reaction with the extracellular matrix (ECM). Experimental validation was performed to examine the ECM-binding capability for a specific isoform, which yielded consistent results with the simulation. Next, preliminary experiments for the proposed system were conducted, which include the vasculogenesis assay using brain endothelial cells derived from induced pluripotent stem cells (iPSCs) and the APTES-mediated polystyrene-PDMS bonding. These two aspects are integral for the next-stage development of the proposed system and the implementation of a multicellular BBB model on this platform. It is anticipated that the proposed system will realize facile, robust and high-throughput assays thus wider adoption in biology research area.en_US
dc.description.statementofresponsibilityby Wei Liao.en_US
dc.format.extent105 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn open-well organs-on-chips device for engineering the blood-brain-barrieren_US
dc.title.alternativeOpen-well OOC device for engineering the BBBen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1227278359en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-01-06T18:33:08Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record