Show simple item record

dc.contributor.advisorRoman Stocker.en_US
dc.contributor.authorGao, Cherry.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2021-01-06T19:32:58Z
dc.date.available2021-01-06T19:32:58Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129213
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 181-189).en_US
dc.description.abstractBacteria in the ocean, though invisible to the naked eye, play an indispensable role in facilitating life on Earth by driving chemical reactions that are essential to the planet's habitability. Some marine bacteria, however, cause disease outbreaks that are capable of rapid and massive destruction of ecosystems. Although individual bacterial cells are ~1 [mu]m in size, their collective action enables large-scale nutrient fluxes throughout the marine food web, as well as wreak havoc in marine systems with major socioeconomic consequences for humans. In this Thesis, I seek to connect single-cell measurements of behavior and metabolism of marine bacteria to ecological processes that shape global biogeochemical cycles and influence ecosystem health.en_US
dc.description.abstractIn particular, I focus on the impact of microbial activities on two globally-relevant contexts: (1) the biogeochemical cycling of sulfur, a chemical element that is essential to life, and (2) coral disease, which threatens the reef ecosystems that support marine biodiversity and provide food security for many human coastal communities. In Chapter 1, I describe the development of synthetic biology tools for the construction of fluorescent reporters in a marine bacterium (Ruegeria pomeroyi). These engineered reporter strains enabled the investigations in Chapter 2, which presents the first single-cell measurements of the transcriptional response of R. pomeroyi to different concentrations of dimethylsulfoniopropionate (DMSP), a pivotal compound in the oceans' carbon and sulfur cycles and a key chemical currency in marine microbial interactions. These measurements revealed the importance of microscale DMSP hotspots in marine sulfur cycling.en_US
dc.description.abstractIn Chapter 3, I describe the simultaneous measurements of behavior (through microscopy) and gene expression (through RNA sequencing) of a coral pathogen, Vibrio coralliilyticus, to investigate the sequence of microscopic events preceding infection. The Appendix describes the methodology of tracking single cells over time through quantitative microscopy and high-throughput image analysis. The application of new tools from biological engineering to marine microbial ecology presents an unprecedented opportunity to understand the connections between single-cell behaviors, and ecosystem- and global-scale processes.en_US
dc.description.statementofresponsibilityby Cherry Gao.en_US
dc.format.extent189 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleEcological insights through single-cell measurements of marine bacteriaen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.identifier.oclc1227506345en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biological Engineeringen_US
dspace.imported2021-01-06T19:32:57Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record