Show simple item record

dc.contributor.advisorDavid A. Sontag.en_US
dc.contributor.authorGopalkrishnan, Rahul.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-01-06T19:35:46Z
dc.date.available2021-01-06T19:35:46Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129254
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 203-221).en_US
dc.description.abstractThe intelligent use of electronic health record data opens up new opportunities to improve clinical care. Such data have the potential to uncover new sub-types of a disease, approximate the effect of a drug on a patient, and create tools to find patients with similar phenotypic profiles. Motivated by such questions, this thesis develops new algorithms for unsupervised and semi-supervised learning of latent variable, deep generative models - Bayesian networks parameterized by neural networks. To model static, high-dimensional data, we derive a new algorithm for inference in deep generative models. The algorithm, a hybrid between stochastic variational inference and amortized variational inference, improves the generalization of deep generative models on data with long-tailed distributions. We develop gradient-based approaches to interpret the parameters of deep generative models, and fine-tune such models using supervision to tackle problems that arise in few-shot learning. To model longitudinal patient biomarkers as they vary due to treatment we propose Deep Markov Models (DMMs). We design structured inference networks for variational learning in DMMs; the inference network parameterizes a variational approximation which mimics the factorization of the true posterior distribution. We leverage insights in pharmacology to design neural architectures which improve the generalization of DMMs on clinical problems in the low-data regime. We show how to capture structure in longitudinal data using deep generative models in order to reduce the sample complexity of nonlinear classifiers thus giving us a powerful tool to build risk stratification models from complex data.en_US
dc.description.statementofresponsibilityby Rahul Gopalkrishnan.en_US
dc.format.extent221 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAdvances in deep generative modeling for clinical dataen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1227519520en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-01-06T19:35:45Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record