MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intermediate lower bounds and their relationship with complexity theory

Author(s)
McKay, Dylan(Dylan Mathis)
Thumbnail
Download1227704425-MIT.pdf (1.009Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
R. Ryan Williams.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
While Complexity Theory has been centered around several major open problems about the relationships between complexity classes, showing resource lower bounds which amount to much weaker versions of these separations still seems to be challenging. We examine some of these lower bounds and techniques for showing them. We improve the techniques of Beame (1989) and use these results to show time-space lower bounds for various circuit problems such as #SAT and a version of SAT for which we are required to give witnesses to satisfiable formulas. We reveal a surprising significance of lower bounds of this kind by presenting their relationships with long-standing questions in Complexity Theory, notably by showing that certain weak lower bounds against the Minimum Circuit Size Problem (MCSP) and other compression problems would imply strong complexity class separations such as P [not equal sing] NP or NP [not subset symbol] P/poly. We further explore techniques for proving lower bounds as well as the connections between lower bounds and the big picture of Complexity Theory. In doing so, we explore the technique of proving fixed polynomial circuit size lower bounds through improvements to the Karp-Lipton theorem and give surprising evidence that improvements to the Karp-Lipton Theorem are (in some sense) the "only" way to prove fixed polynomial size circuit lower bounds against P[superscript NP].
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 127-133).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129299
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.