MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Image segmentation for highly variable anatomy : applications to congenital heart disease

Author(s)
Pace, Danielle F.
Thumbnail
Download1227705035-MIT.pdf (19.97Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Polina Golland.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Automated segmentation of medical images can facilitate clinical tasks in diagnosis, patient monitoring, and surgical planning. However, current methods either rely on explicit correspondence detection, or use machine learning techniques that require a large collection of fully annotated and representative images. Neither of these approaches are suitable when anatomical variability is high and labeled data is limited. In this thesis, we formulate new interactive segmentation methods and evaluate their applicability to congenital heart disease, which involves a wide range of cardiac malformations and topological changes and for which few image analysis methods have been previously developed. We begin by describing the new imaging datasets that we have created to support our research in congenital heart disease. Next, we show that image patches can be used to exploit manual segmentations made on a small set of slice planes in order to automatically segment the rest of an image, and investigate the potential of active learning to automatically solicit user input. Third, we develop an iterative segmentation model that can be accurately learned from small datasets which do not necessarily include the same pathologies as a new image to be segmented, and demonstrate that our model better generalizes to patients with the most severe heart malformations. Ultimately, the methods developed here take a step towards bringing the benefits of medical image analysis to challenging clinical applications involving large anatomical variability and small datasets.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 125-144).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129302
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.