MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ResNet with one-neuron hidden layers is a Universal Approximator

Author(s)
Lin, Hongzhou; Jegelka, Stefanie Sabrina
Thumbnail
DownloadPublished version (734.6Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We demonstrate that a very deep ResNet with stacked modules that have one neuron per hidden layer and ReLU activation functions can uniformly approximate any Lebesgue integrable function in d dimensions, i.e. ℓ1(Rd). Due to the identity mapping inherent to ResNets, our network has alternating layers of dimension one and d. This stands in sharp contrast to fully connected networks, which are not universal approximators if their width is the input dimension d [21, 11]. Hence, our result implies an increase in representational power for narrow deep networks by the ResNet architecture.
Date issued
2018-12
URI
https://hdl.handle.net/1721.1/129326
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Neural Information Processing Systems
Publisher
Morgan Kaufmann Publishers
Citation
Lin, Hongzhou and Stefanie Jegelka. “ResNet with one-neuron hidden layers is a Universal Approximator.” Advances in Neural Information Processing Systems, December-2018 (December 2018) © 2018 The Author(s)
Version: Final published version
ISSN
1049-5258

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.