MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Publications
  • CBMM Memo Series
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From Associative Memories to Deep Networks

Author(s)
Poggio, Tomaso
Thumbnail
DownloadCBMM-Memo-114.pdf (1.011Mb)
Metadata
Show full item record
Abstract
About fifty years ago, holography was proposed as a model of associative memory. Associative memories with similar properties were soon after implemented as simple networks of threshold neurons by Willshaw and Longuet-Higgins. In these pages I will show that today’s deep nets are an incremental improvement of the original associative networks. Thinking about deep learning in terms of associative networks provides a more realistic and sober perspective on the promises of deep learning and on its role in eventually understanding human intelligence. As a bonus, this discussion also uncovers connections with several interesting topics in applied math: random features, random projections, neural ensembles, randomized kernels, memory and generalization, vector quantization and hierarchical vector quantization, random vectors and orthogonal basis, NTK and radial kernels.
Date issued
2021-01-12
URI
https://hdl.handle.net/1721.1/129402
Publisher
Center for Brains, Minds and Machines (CBMM)
Series/Report no.
CBMM Memo;114

Collections
  • CBMM Memo Series

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.