Show simple item record

dc.contributor.authorKoc, Birgul
dc.contributor.authorMohebujjaman, Muhammad
dc.contributor.authorMou, Changhong
dc.contributor.authorIliescu, Traian
dc.date.accessioned2021-01-26T16:59:36Z
dc.date.available2021-01-26T16:59:36Z
dc.date.issued2019-12
dc.date.submitted2018-10
dc.identifier.issn1019-7168
dc.identifier.issn1572-9044
dc.identifier.urihttps://hdl.handle.net/1721.1/129573
dc.description.abstractFor reduced order models (ROMs) of fluid flows, we investigate theoretically and computationally whether differentiation and ROM spatial filtering commute, i.e., whether the commutation error (CE) is nonzero. We study the CE for the Laplacian and two ROM filters: the ROM projection and the ROM differential filter. Furthermore, when the CE is nonzero, we investigate whether it has any significant effect on ROMs that are constructed by using spatial filtering. As numerical tests, we use the Burgers equation with viscosities ν = 10− 1 and ν = 10− 3 and a 2D flow past a circular cylinder at Reynolds numbers Re = 100 and Re = 500. Our investigation (i) measures the size of the CE in these test problems and (ii) shows that the CE has a significant effect on ROM development for high viscosities, but not so much for low viscosities.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10444-019-09739-0en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleCommutation error in reduced order modeling of fluid flowsen_US
dc.typeArticleen_US
dc.identifier.citationKoc, Birgul et al. "Commutation error in reduced order modeling of fluid flows." Advances in Computational Mathematics 45, 5-6 (December 2019): 2587–2621 © 2019 Springer Science Business Media, LLC, part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.relation.journalAdvances in Computational Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:38:57Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:38:57Z
mit.journal.volume45en_US
mit.journal.issue5-6en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record