MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting medicine inpatient discharges at Massachusetts General Hospital

Author(s)
Starobinski, Keren S.(Keren Sarah)
Thumbnail
Download1237564991-MIT.pdf (1.978Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Retsef Levi.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
At Massachusetts General Hospital, inpatients often experience significant non-clinical delays in patient care, and frequently wait in the Emergency Department or in inpatient-floor hallways before receiving bed assignments. Such delays result in overcrowding in the Emergency Department, heightened dissatisfaction among patients, and an increase in overall patient length-of-stay. Delays in bed assignments primarily occur because of the discrepancy between the timing of admissions, which generally occur throughout the day, and the timing of discharges, which typically occur in the afternoon. Furthermore, although bed managers know about scheduled admissions in advance, there is no standardized protocol that allows bed managers at the Admitting Department to identify which patients are ready to leave the hospital. In this project, we develop a discharge prediction tool that identifies medicine and neurology inpatient discharges that will occur within the next 24 hours. The goal is to use this tool to enable a more proactive bed-management process at MGH, provide the hospital staff with a methodical way to identify discharges, and ameliorate overcrowding challenges in the Emergency Department. The model was trained using the data of 60,993 inpatients who were hospitalized sometime between May 2016 and September 2018. The prediction algorithm achieved a 0.830 mean AUC-ROC (SD 0.002), 47.6% precision (24 hours), 67.4% precision (48 hours), and 43.8% recall using a decision threshold of 0.31. For inpatients who were on cardiology floors within the Department of Medicine, the model achieved 58.3% precision (24 hours), 74.3% precision (48 hours), and 63.5% recall using 0.31 as the decision threshold. Since the model used data that is accessible in most hospital information systems, it can be applied to other hospitals as well.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 115-118).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129850
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.