MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid nutrient fluctuations and their implications for bacterial growth

Author(s)
Nguyen, Jennifer Kim Thu.
Thumbnail
Download1237149198-MIT.pdf (13.06Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Roman Stocker.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bacteria, like all lifeforms, rely on resource acquisition for growth, and the tight coupling between bacterial growth physiology and nutrient availability has long been observed. When nutrient environments shift on timescales of hours, days or seasons, bacteria adapt to a physiological steady state characteristic of the new environment. However, the microscopic heterogeneity inherent of bacterial habitats implies that nutrient concentrations often fluctuate on timescales of seconds or minutes, timescales too rapid for bacteria to reach the steady state corresponding to the instantaneous environment. Despite this, steady-state growth is expansively used as a model to understand bacterial physiology, even in dynamic environments. In this Thesis, I experimentally demonstrate that bacterial growth in rapidly fluctuating environments cannot be predicted from steady-state growth models. Using a custom microfluidic device coupled with single-cell microscopy and image analysis, I quantified the growth physiology of thousands of individual E. coli cells experiencing either (1) periodic nutrient fluctuations on timescales ranging from 30 seconds to 60 minutes or (2) steady environments of equal average nutrient concentration. Growth rate in fluctuating environments was 16-50% smaller than in comparable steady environments, corresponding to a 10²- to 10⁸-fold loss in daily biomass production. However, cells grown in fluctuating environments had a growth advantage in the minutes after a nutrient shift over cells grown in steady environments. Cell size also displayed deviations from steady-state trends, with a particular fluctuating timescale producing cell sizes 54% larger than expected. These significant deviations from steady-state predictions highlight the importance of nutrient timescale and challenges our classical understanding of bacterial growth.
Description
Thesis: Ph. D. to the Microbiology Graduate Program, Massachusetts Institute of Technology, Department of Biology, February, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129902
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.