MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalization of deep neural networks to unseen attribute combinations

Author(s)
Henry, Timothy G.
Thumbnail
Download1237411492-MIT.pdf (1.390Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomaso Poggio.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Visual understanding results from a combined understanding of primitive visual attributes such as color, texture, and shape. This allows humans and other primates to generalize their understanding of objects to new combinations of attributes. For instance, one can understand that a pink elephant is an elephant even if they have never seen this particular combination of color and shape before. However, is it the case that deep neural networks (DNNs) are able to generalize to such novel combinations in object recognition or other related vision tasks? This thesis demonstrates that (1) the ability of DNNs to generalize to unseen attribute combinations increases with the increased diversity of combinations seen in training as a percentage of the total combination space, (2) this effect is largely independent of the specifics of the DNN architecture used, (3) while single-task and multi-task formulations of supervised attribute classification problems may lead to similar performance on seen combinations, single-task formulations have a superior ability to generalize to unseen combinations, and (4) DNNs demonstrating the ability to generalize well in this setting learn to do so by leveraging emergent hidden units that exhibit properties of attribute selectivity and invariance.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 71-73).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129905
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.