MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributionally robust submodular maximization

Author(s)
Staib, Matthew; Wilder, B; Jegelka, Stefanie Sabrina
Thumbnail
DownloadSubmitted version (725.4Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Submodular functions have applications throughout machine learning, but in many settings, we do not have direct access to the underlying function f. We focus on stochastic functions that are given as an expectation of functions over a distribution P. In practice, we often have only a limited set of samples fi from P. The standard approach indirectly optimizes f by maximizing the sum of fi. However, this ignores generalization to the true (unknown) distribution. In this paper, we achieve better performance on the actual underlying function f by directly optimizing a combination of bias and variance. Algorithmically, we accomplish this by showing how to carry out distributionally robust optimization (DRO) for submodular functions, providing efficient algorithms backed by theoretical guarantees which leverage several novel contributions to the general theory of DRO. We also show compelling empirical evidence that DRO improves generalization to the unknown stochastic submodular function.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/129983
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
22nd International Conference on Artificial Intelligence and Statistics
Publisher
MLResearchPress
Citation
Staib, Matthew et al. "Distributionally robust submodular maximization." 22nd International Conference on Artificial Intelligence and Statistics, April 2019, Naha, Okinawa, Japan, MLResearchPress, April 2019. © 2019 by the author(s)
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.