Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence
Author(s)
Nouwens, Midas; Liccardi, Ilaria; Veale, Michael; Karger, David R; Kagal, Lalana
Download3313831.3376321.pdf (1.738Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
New consent management platforms (CMPs) have been introduced to the web to conform with the EU's General Data Protection Regulation, particularly its requirements for consent when companies collect and process users' personal data. This work analyses how the most prevalent CMP designs affect people's consent choices. We scraped the designs of the five most popular CMPs on the top 10,000 websites in the UK (n=680). We found that dark patterns and implied consent are ubiquitous; only 11.8% meet our minimal requirements based on European law. Second, we conducted a field experiment with 40 participants to investigate how the eight most common designs affect consent choices. We found that notification style (banner or barrier) has no effect; removing the opt-out button from the first page increases consent by 22-23 percentage points; and providing more granular controls on the first page decreases consent by 8-20 percentage points. This study provides an empirical basis for the necessary regulatory action to enforce the GDPR, in particular the possibility of focusing on the centralised, third-party CMP services as an effective way to increase compliance.
Date issued
2020-04Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Publisher
Association for Computing Machinery (ACM)
Citation
Nouwens, Midas et al. "Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence." Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, April 2020, Honolulu, Hawaii, Association for Computing Machinery, April 2020. © 2020 ACM
Version: Final published version
ISBN
9781450367080